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B. S. GLYDE 
Bakelite Xvlonite Limited, Caseelloid Division, L eicester 

(Received Septeniber 30, 1976) 

Pressure distribution curves derived from isothermal power-law theory are shown to match 
closely with the experimental data of Bergen and Scott. A method of estimating roll bearing 
loads from torque measurements obviates errors incurred when using plastometry. An 
analysis of unequal roll speed calendering is presented and surface pattern formation is 
explained as a laminar flow effect, with experimental evidence. 

I NTRO D UCTlO N 

Calendering is a means of forming a sheet by passing a mass of plastic material 
between rollers. The process has been analysed in remarkably few publications 
although it is widely employed in industry, particularly in the manufacture of 
floor and wall coverings. 

Ardichvilil in 1938 and Eleyg in 1946 arrived at similar expressions for the 
pressure distribution between the rolls; they considered the deformation of the 
material as a homogeneous compression, and assumed that the material would 
leave the rolls at the nip. The first treatment based on a viscous flow model was 
that of Gaskell3 in 1950 who derived equations relating to Newtonian fluids as 
well as the pressure distribution function for a general non-Newtonian fluid. 
Using a Bingham plastic as an example he showed that the sheet should leave 
the rolls at a thickness greater than that of the nip. Publishing in 1951 Atkinson 
and Nancarrow4 pioneered the use of a plunger rheometer, recognized the 
wide applicability of the power-law flow function to thermoplastics and 
applied it to several processes including calendering. 

Bergen and Scott5 determined pressure profiles using a transducer in the roll 
surface and provided support for Gaskell’s conclusions, although they experi- 
enced difficulty in matching the empirical and theoretical pressure profiles. 
Dexter and Marshall6 calculated roll separation forces using Ardichvili’s 
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272 B. S. CLYDE 

equations together with some of Gaskell’s concepts and claimed reasonable 
quantitative agreement between theory and practice. Paslay7 extended 
Gaskell’s viscous flow solution to include elasticity on a Maxwell model, show- 
ing the effect of relaxation time on pressure gradient, but did not consider 
elastic recovery at the point where the material leaves the rolls. 

The work presented here was carried out mainly between 1955 and 1958. 
The author wishes to acknowledge the contribution made in 1962 by a col- 
league, B. Martin, who used a computer to produce numerical solutions to the 
differential equations. McKelvey8 in I962 and Pearsong in I966 further 
developed the analyses for Newtonian and power-law fluids, introducing some 
mathematical rigour and thus saving the present author from justifying his 
assumptions, since the model used is basically the same as that of the previous 
workers3.4.8~9 mentioned. 

Special features of the process 

A calender is justifiably called a press because it does virtually the same job as 
a platen press but in a continuous manner. The vertical bearing loads are very 
high, but there is little or no horizontal load because the horizontal component 
of pressure on the roll surface is balanced by the surface shear stress. 

It is a basic characteristic of the process that when the roll speeds are equal 
the extruded sheet tends to leave the rolls with every part of the mass at the 
same velocity, so that the sharkskin effect encountered in extrusion through 
fixed dies is absent. Even a slight thickness reduction makes it possible to “put 
a finish” onto a sheet; the surface suffers blemishes only when excessive 
adhesion to the roll surface prevents a clean break at exit. A calender can 
produce a hard, smooth sheet from a highly-filled mix containing only 20-30% 
of polymer binder. By contrast, when such a material is extruded through a 
cylindrical die the extrudate breaks up into a series of hollow cones because the 
forces involved in equalizing the exit speed exceed the cohesive strength of the 
material. This is a pronounced version of the sharkskin effect observed when 
extruding less rigid materials. 

In sufficiently slow calendering elastic recovery effects (analogous to die 
swell) in the extrudate are absent because the shear rate is zero at exit. In faster 
calendering the extrudate may retain the memory of shear experienced before 
and after the pressure maximum, causing the sheet to leave the rolls at a thick- 
ness greater than that predicted by viscous flow theory. Melt fracture is not 
experienced even at high speeds because there are no rapid changes in the 
shape of the flow channel; shear acceleration is therefore relatively slow and 
the structure of the polymer melt is able to comply at the required rate. 

If different roll speeds are used the sheet tends to cling to the faster roll 
because the normal stress differential creates a greater tension on that side of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
9
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



CALENDERING OF PLASTICS COMPOSITIONS 273 

the sheet when leaving the nip. The normal stress effect may be masked by the 
existence of a temperature differential between the rolls ; some polymers stick 
more firmly to a colder surface, others to a hotter one. 

The feed material rarely sticks to the roll surfaces immediately on entry 
(see Figure 12); there is normally a short distance over which the material skids 
until it picks up enough friction to build up pressure, which then effects 
adhesion. If one roll is much hotter than the other, the mass may slip against 
that roll throughout, giving rise to considerably distorted velocity profiles. 

Various surface patterns can be produced, entirely as a result of laminar 
flow, by using different roll speeds and temperatures together with special pre- 
form preparation using multi-coloured feedstock. Some of these patterns are 
similar in type to effects which can be produced by extrusion and injection 
moulding. 

Theory: Assumptions of the  model 

The simplifying assumptions made in this treatment do not differ from those 
of Gaskell, McKelvey and Pearson, and have been dealt with comprehensively 
by these authors. The process is treated as if it were isothermal, and the roll 
dimensions are assumed to be large compared with the arc of contact. The 
calendered material is assumed inelastic. 

The material being calendered is regarded as a power-law pseudoplastic 
having a basic flow equation 

where p is the shear rate, u the shear stress and 4 the fluidity (or reciprocal 
viscosity) at unit shear stress. The exponent v is assumed to be an odd number, 
because the use of an “odd” function F(-x)  = -F(x) avoids the necessity for 
complicating the equations with instructions about signs. An even exponent 
can always be approximated by the ratio of two large odd numbers. 

y :. (b 0’ (1) 

PRESSURE FUNCTION 

A derivative of the velocity distribution and pressure equations from the 
geometry of Figure 1 for equal speed rolls is given in Appendix A. These 
equations have appeared in other papers3.*.9 in one form or another. Successive 
integration of the flow equation with appropriate limits leads to the expression 

where G is the pressure gradient dp/dz in the flow direction. It has been assumed 
the the sheet leaves the rolls at the peripheral speed, so that the flow rate is 

c$ G’ h’’-’L = U (h - he) (V + 2 )  (2) 

2LUhe. 
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274 11. S. GLYDE 

INLET h = hi 

NIP h=ho 
\ 

.. 

)fL, 

I 

FIGURE I Geometry of the equal roll speed treatment 

FIGURE 2 Pressure gradienl curve for v 4, h,, 0.32 
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CALENDERING OF PLASTICS COMPOSITIONS 275 

To a first approximation the gap between the rolls can be related to distance 
from the nip by the equation h/ho = 1 + 12t where 5 = z/ , /2Rho.  A typical 
pressure gradient curve is shown in Figure 2. Equation (2) can be integrated in 
the form 

' C  

L 
P = K i j  F(5)dL (3) 

/::F(O d5 = 0 (4) 

where 51 is the entry point wherep = 0. The mnterial will leave the rolls where 
p = 0 again, i.e. where 

It can be shown that [e = - i n  where 5 n  is the position of maximum pressure, 
and that the pressure at the nip is half the maximum pressure. Thus he = h,. 

Bergen and Scott5 made measurements of pressure using a transducer in the 
roll surface. The result of one experiment is shown as curve (a) in Figure 3. 
In comparing their results with Gaskell's Newtonian theory the curves were 
matched at the nip, and the 5 values at the point of maximum pressure were 
made to coincide, so that a very bad fit was obtained in the entry region. 
Moreover, the filled thermoplastic used was clearly non-Newtonian and 
although comprehensive flow data are not available it is clear from Figure 3 
that the power-law-based pressure profile (c) with v = 4 can be made to give a 
much better fit. Even their Newtonian curve (b) can be made to fit better 
(curve (d)) if some licence is taken on the position of 5e. The best fit would be 
achieved by v = 7 1 ,  but such values are not supported by experiments on 
filled thermoplastics which normally have v values between 2 and 4. 

The most likely explanation for the more gradual rise of pressure at the inlet 
in the experiment is suggested by the familiar experience that the entering 
sheet or bank of feed material slips against the rolls until enough pressure is 
built up for full  adhesion. 

The insensitivity of h,, to hi is shown by Figure 4 plotted from Eq. (4). 
It is clear that the h n  - hi curves and hence the 5,) - ti curves are very close 
together over a wide range of v values. Figure 5 shows h / h n  plotted against 
I I i i ho .  

BEARING LOADS A N D  DRIVING POWER 

By integrating pressure and shear stress separately over the arc of contact 
(Appendix B) expressions can be obtained for the total load on the roll bearings 
and the torque required to drive the rolls. Taking the ratio of these quantities 
eliminates the specific fluidity 4 and thus removes an important source of 

~~ 

tZeta drawn as a zed on the figures. 
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B. S. GLYDE 

FIGURE 3 Comparisons of Bergen and Scott data with theory (see text p. 275). 

1.2 

- he 
ho 

1.1 

1.0 

FIGURE 4 Inlet versus exit thickness related to nip gap. From lower curve v -- 7. 0 t h  
are for Y = 4, 3 and 2. 
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CALENDERING OF PLASTICS COMPOSITIONS 211 

FIGURE 5 Plot of inlet-exit thickness ratio against inlet-nip ratio. 

FIGURE 6 Ratio of integrals for bearing load-drive power ratio. 
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278 n. s. CLYDE 

error which is unavoidable when calculating bearing loads from e.g. Eq. (3) 
with data obtained from plastometry. Errors due to non-isothermal conditions 
and to slip in the entry region will also be reduced. The exponent v can usually 
be estimated more accurately. For calender design purposes measurements 
on one calender can easily be translated for other sets of dimensions and 
conditions. 

= "J 2/10 3 12  

Load on each end of the rolls 

Drive power 
_ ~ _  

which is another form of Eq. (16) in Appendix B. 

is shown in Figure 6. 
The integrals 11 and 1 2  are derived in Appendix B and a typical 11/12 curve 

UNEQUAL ROLL SPEEDS 

In published work9 the flow analysis for the case of unequal roll speeds has 
not been taken further than a statement of the velocity distribution equation, 
except in the case of the Newtonian fluid where unequal speeds do not give rise 
to complication. 

The derivation of the pressure gradient function is given in Appendix B. 
By considering a datum line y = 0 where shear stress is zero the flows on each 
side of the line can be compared, matching the flow velocity at the line, which 
is shown dashed in Figure 7. Approximate shapes of velocity profiles in each 
region are also shown. Where the datum lies inside the roll there is no velocity 
minimum or maximum within the flowing mass. 

The pressure gradient can then be expressed as a function of h (and thus 
as a function of 5)  via parametric equations in h (hl/hz, the ratio of distances 
from the datum line to the faster and slower rolls respectively). The ratio p of 
the speed U1 of the faster roll to the speed UZ of the slower roll is also used. 

The pressure gradient G at a point where the gap between the rolls is 2h is 
given by (Appendix C Eq. (22)) 

v i  1 

( 5 )  
+GVhnV+' p - 1 (A + I)"+' 

- - 
2U(Y /1) p + I * h V + 1 -  1 . G) 

where 

Pressure gradient curves calculated from Eq. (5) are shown in Figure 8 and 
pressure distribution in Figure 9. One problem is that when p is significantly 
larger than unity the shapes of the pressure curves are very different from those 
obtained in the case of equal roll speeds, and no check is possible by putting 
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CALENDERING OF PLASTICS COMPOSITIONS 279 

FIGURE 7 Geometry of the unequal roll-speed treatment. 

FIGURE 8 
(c) (dashed) p I .  

Pressure gradient curves for unequal roll speeds, Y = 3. (a) p = 3. (b) p = 1 . I .  
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280 B. S. CLYDE 

FIGURE 9 
/ I , ,  ~ 0.5. v 3.  

Pressure distributions for (a) p ~ 3, hn = 0.4, (b) p = I . I ,  hn 0.4, (c) p c 3, 

FIGURE 10 Shear rate at roll surface versus 1. U1 = UZ andv = 3 ,  hn = 0.4. Negative and 
positive shear rates have been plotted on the same side of the <-axis. 
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CALENDERING OF PLASTICS COMPOSIlIONS 28 1 

p -- 1 since the derivation depends on p # I .  This difficulty is overcome by 
accurately plotting curves for a value of p slightly greater than unity (curve (b), 
Figure 8 shows p = 1 . O l )  showing that there is a rapid transition from a more 
pointed to a more rounded pressure profile over a small range of speed ratio. 
The “pointedness” is controlled by the shape of the dp/& curve at 5n (Figure 8). 

As shown in Figures 8 and 9 the pressure maximum is at 5 = In. As with the 
case of equal roll speeds the pressure at the nip (A,)  is half the maximum pres- 
sure, and the extrudate leaves the rolls at 5 = - t,,, however different the 
roll speeds. These properties are hardly surprising since they result directly 
from the symmetry of the flow channel around the nip. As p is increased to 3 
the change in the shape of the pressure profile compared with that of p = 1 
becomes dramatic, dp2/dz2 being almost exactly halved over a wide range of 5. 
When one roll is stopped altogether the value is reduced to less than one fifth 
in the region of {,,. Unfortunately, it is not possible to see the real effect of 
speed differential on bearing load from comparing pressures at similar 5 “  
values, because the {n -- 5i relationship changes with p .  We have not yet 
programmed a computer to find C n  values for different p at the same inlet 
thickness. 

At the point {n the shear rate is zero for all y when roll speeds are equal, and 
constant at p,, = ((/I  ~ 112)/2h when U1 and UZ are unequal. On the inlet side 
of {,, the material is travelling more slowly than the mean roll speed. On the 
exit side it travels increasingly faster up to the nip and then slows down until its 
average speed is equal to that of the rolls at exit. 

It should be noted that the mean velocity of the issuing sheet cannot equal 
the surface speed of either roll. The surface which leaves the slower roll is 
impaired due to the dragging effect. In practice the sheet will often stick to the 
faster roll, and particularly so if the temperature of that roll is more suited to 
adhesion. This effect is often used to advantage in take-off systems. 

SURFACE PATTERN EFFECTS 

Calendered sheets used for decorative purposes are often self-coloured and 
bear various types of distinctive surface pattern such as streaky or marbled 
effects. These patterns are due entirely to laminar flow in the plastic compo- 
nents of the mix and depend on 

i) the striation thickness of components of different colour at the surface 

i i )  the size of filler particles relative to the striation thickness 
iii) the initial size, shape and orientation of particles of various coloured 

of the sheet 

components in the feed material 
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- 
LOG PRESSURE 

FIGURE I I 
meter. 

Log log plot of pressure versus Row rate in Atkinson-Nancarrow plasto- 

FIGURE 12 Striations (“strain profiles”) formed by calendering a striped sheet. 
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CALENDERING OF PLASTICS COMPOSITIONS 283 

The striation thickness of a component is inversely proportional to the 
amount of shear incurred during passage through the calender. The amounts of 
shear experienced by the different components are determined by the ratios of 
their viscosities. Effects such as streaking or marbling will not appear until 
the total shear is enough either to lengthen the original streaks of coloured 
material sufficiently or, in the case of marbling, to reduce the striation thickness 
to such an extent as to enable one layer to break through another at the surface; 
this effect can be modified by the presence of particles of filler larger in diameter 
than the striation thickness. 

Patterns are thus usually formed at the surface of the faster roll where 
the shear rate is higher. Different roll temperatures can be used either alter- 
natively or as a complement to different speeds. Most of the unrecoverable 
shear is experienced before the pressure maximum is reached at tn ;  changes in 
shear rate experienced between l n  and lo are reversed again between to and l e .  
I t  would be wrong to assume that there is no further development of the pattern, 
since all striation breakthrough effects are likely to be irreversible. The 
shearing behaviour between 5 ,  and li is dependent on the same conditions that 
produced the shear between li and tn  and cannot be influenced independently; 
but it can be regarded as a characteristic of the process that some modifications 
of surface pattern and indeed some of the characteristic features of marble 
patterns are likely to result from the two changes in shear direction. Figure 10 
shows shear rate at the roll surface for v = 3, U1 - U Z ,  h n  = 0.4, together with 
the cumulative shear, plotted against 5 .  

The means of producing uniquely distinctive patterns is usually kept 
secret. The relative striation susceptibilities of a range of components differing 
in both power-law flow constants give rise to a great complexity of pattern- 
making possibilities. Figure 1 I shows log-log plastometry plots of six com- 
ponents of one particular coloured agglomerate of a filled thermoplastic. 
Curves (a), (e) and (f) are of similar slope v but show different specific fluidities. 
Curves (b) and (d) have a higher shear susceptibility but show intermediate 
fluidity and curve (c) crosses (b) and (d). These mixes differed only in pigments 
and in proportions of fillers (mainly wood flour). 

Figure 12 shows the development of surface striations in a sheet which had 
been prepared with alternate stripes of two coloured components of different 
thicknesses and melt viscosities, running perpendicular to the flow axis. The 
rolls were stopped and opened simultaneously in order to release the samples. 
I t  is obvious from Figure 12 that the material did not adhere to the roll surface 
until the point A was reached. There is in fact considerable evidence for 
slippage of thermoplastics against metal surfaces, particularly under low 
pressures and temperatures and with mixes containing large proportions of 
fillers. The material used in the experiments was a mix of oxidized drying oil 
with about boo,> of filler consisting of wood flour and pigments. Such binders 
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284 B. S. CLYDE 

stick tenaciously to a cold steel surface, but have a very low viscosity against 
a hot one. Thus in some of the experiments it was found that the material had 
slipped continuously against the hot rolls, whereas there was evidence of a high 
shear rate in layers adjacent to the cold roll. 

0 UTSTAN DING PROBLEMS 

The flow rate has been defined by equalizing roll speed and sheet speed at 5,):  
Q = LUkn = LUH,. I t  is meaningless to attempt to define a new exit thickness 
which is greater due to elastic recovery, and at which the sheet speed equals 
the roll speed, because this redefines h n  and thus In and ti; and merely requires 
a smaller nip gap to achieve a given exit sheet thickness. 

I f  we are concerned about the effect of elastic recovery (and it should be 
noted that most thermoplastics exhibit elastic recoveryafter shear deformation) 
we have to consider a situation in which the material leaves the rolls at a 
thickness greater than h,,, i.e. ( { i l  > 1 < n l ,  but where the mean speed of the 
sheet is lower than that of the roll surfaces. From Eq. ( I  I ) ,  Appendix A, 
the minimum velocity when roll speeds are equal is obtained by puttingylh - =  0, 
so that 

For instance, if he = 1.25 h n  and v = 3, ii = 0.7515‘. This type of effect might 
occur due to strong adhesion of material to rolls, or due to recovery from 
normal stress differences in the extrudate. In the latter case the material has 
not moved into the next region of the theoretical pressure profile beyond 
- 5 n  because the normal stress requiring dissipation is of elastic rather than 
viscous origin. The sheet has arrived at - unable to leave the roll surfaces 
because it is in tension. The present state of knowledge on normal stress 
effects should make possible a more comprehensive study of this aspect of the 
process. 

Slippage in the inlet region is obviously an obstacle to a straightforward 
mathematical description of flow behaviour. In industrial technology this may 
not matter, since enough information can be obtained for practical purposes 
from simple theory and practice. 

The attempted procuring of “strain profiles” has been described in the 
section on surface pattern. The section shown in Figure 12 showed profiles 
tallying reasonable well with the calculated ones for v = 3 shown in Figure 13, 
but quite fortuituously. Most of the samples calendered showed adequately 
the striation effects near the sheet surface to explain the formation of patterns, 
but exhibited chevronny profiles (Figure 14) along their central plane. These 
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CALENDERING OF PLASTICS COMPOSlTlONS 285 

FIGURE 1 3  Calculated strain profiles for UI = U.L, v := 3. 

FIGURE 14 Observed V shaped profiles can be approximated theoretically only by 
puttingv = 0. 
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286 B. S. CLYDE 

cannot be explained in terms of viscous flow, and are probably due to the initial 
kinking of the leading edges of the samples on entering the nip. This had been 
noticed in earlier work with a larger calender. A refinement of the technique 
would present the striped samples as part of a larger sheet, so that a steady 
state could be reached before the experiment took place. 

Symbols 

e 
h 
i 

I1 

0 

P 
f 

21 

Y 

c‘ 
G 
H 
K 
L 
P 
R 
U 
V 
5 
Y 
Y 
x 

Z 

V 

P 
U 

7 

dJ 

suffix denoting exit plane 
half the gap between the rolls at any point along the z-axis 
suffix denoting inlet plane 
suffix denoting “neutral” plane, i.e. plane including pressure maximum 
suffix denoting plane of the calender nip 
pressure in the mass being calendered at any point along the z-axis 
time 
fluid velocity i n  z-direction 
vertical distance from zero shear stress, measured towards upper roll 
distance from nip plane contrary to flow direction 
circumferential force at roll surface 
pressure gradient rlpldz 
total horizontal force on roll bearings 
collection of terms from Eqs. (9) and (lo), Appendix A 
axial lengths of I 011s wetted by calendered material 
volumetric flow rate of calendered material in z-direction 
radius of roll 
surface velocity of roll, faster U1, slower U Z  
total vertical force on roll bearings 

(gamma) amount of shear 
shear rate -= dyldt 
(lambda) =- / I I / ~ B  

(nu) exponent of shear stress in flow function 
(rho) ratio of roll speeds U1/Ua 
(sigma) shear stress 
(tau) shear stress at roll surface 
(‘phi) specific fluidity; shear rate and thus reciprocal viscosity at unit shear 
stress 

= Z l 4 2 R h o  = 2 / h / h o  - I 
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Appendix A 

PRESSURE AND VELOCITY EQUATIONS, EQUAL ROLL SPEEDS 

The power-law flow equation 

y = du/dy -= +a' = +(dp/riz)'y' (6) 

is used, a datum line y = 0 having been defined as the line of zero shear rate. 
When U1 - UZ the system is symmetrical. Integration of Eq. (6) gives 

N = U - 4 G'(h"'1 - y'")/(v + I )  (7) 
because u T U wherey = h. G = dppidz; for other nomenclature see Figure 1 and 
page 11. 

The total rate of flow Q is'given by 

U.C/Y = Uh - 4 G'hV+2/(V + 2 )  (8) 

so that 

Where at 5 = Cn dppidz = 0 and y = 0 at  all y so that u = U = Q/2Lhn. 
pressure gradient (dplclz) from Eq. (9) is shown plotted in Figure 2 for v = 4, 
thus eliminating 4 G' from Eqs. (8) and (9). 
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Appendix B 

BEARING LOADS A N D  DRIVE POWER 

The vertical force V on the roll due to pressure on its surface is given by 

which can be written in the form 

V -= LKI 2Rho 11({i,v) (1  3) 

where K1 is from Eqs. (9) and (10) in Appendix A and / l (<i ,v)  is the integral 

j - "kF(L)& i t  

There is a further load due to the vertical component of shear stress at  the roll 
surface, which is small compared with that due to pressure and can be 
neglected. 

The horizontal load H on the bearings is zero because 

f:..dh + lZq r.dz -- 0 
7 ,  

where T is the surface shear stress Ck. The circumferential force C on the roll 
surface is given by 

where s is measured along the circumference of the roll. This can be written in 
the form 

( 1 5 )  C -1 2/2Rho L K ~ h o  /z([i,V') 

where it has been assumed that s z z .  /z((,.v) is the integral 

J i 7 l  + 5")F(5')d5 

Hence the ratio of total bearing load to the torque on one of the rolls is 
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Appendix C 

UNEQUAL ROLL SPEEDS 

Considering the geometry of Figure 7 

111 = U1 - + G v ( h ~ v i ~ l  - YIV")/(V + 1) 

(Ul  - U2)(v + I )  = +GV(hlV+1 - h2'+1) 

(17) 

(1 8) 

and similarly for u2. At y l  = y 2  = 0, u1 = u2 so that 

Integrating (17) with its complement for u2 to give the volumetric flow rates, 
followed by adding the two flows, gives the flow rate per unit roll length 

+GV(hiv"2 + h ~ ' + ~ ) / ( v  + 2 )  (19) 

Now let p = U 1 / U 2 ,  h 7 hl/hz,  111 + hz = 2h. Substituting for G from Eq. (18) 
then gives 

This can be rearranged to 

h/(h + I )  - (v + I) /(XV+l - 1 
v f 2  

h n  

which is a more convenient form for computation, since the p and X functions 
have been separated. 

Equation (19) can be written in the form 

When calculating manually, values of h are selected for chosen values of v and 
p, and hn/2h values calculated from Eq. (21).  From the values of hn/h,  4 values 
for plotting are obtained via the relationship C2 = (h/hn)(hn/ho) - 1, having 
selected a value for hn/ho. In manual computation and graphical integration to 
obtain pressure profiles it is necessary to choose a value of cn, so that 41 is 
obtained as a result of the integration. 
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